(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 2110 Roll No.

STITUTE OF T

## B. Tech.

## (SEM. V) ODD SEMESTER THEORY EXAMINATION 2010-11

## FUNDAMENTALS OF E.M. THEORY

Time: 2 Hours

Total Marks: 50

Note: Attempt all questions.

Attempt any four of the following: 1.

 $(5 \times 4 = 20)$ 

- (a) State and prove divergence theorem.
- (b) Given two vectors  $R_A = -a_x 3a_y 4a_z$ ,  $R_B = 2a_x + 2a_y + 2a_z$ and C(1,3,4). Find:
  - (i) RAB
  - (ii) | R
  - (iii) a
  - (iv) a<sub>p</sub>
  - (v) Unit vector directed from C toward A.
- (c) Derive an expression of energy density in electrostatic field.
- The potential in free space is given by: (d)

$$V = (50/r), a < r < b (spherical)$$

- Show  $\rho_s = 0$  for a < r < b(i)
- Find the energy stored in region a < r < b.

- (e) Define scalar field and vector field with suitable example.
- (f) Discuss different coordinate system. Show various parameter with diagram.
- 2. Attempt any two of the following: (5×2=10)
  - (a) Discuss electrostatic boundary condition between conductor and free space.
  - (b) Define continuity equation in point form and integral form.
  - (c) A capacitor with two dielectric is as follows:

    Plate areas =  $100 \text{ cm}^2$ , dielectric 1 thickness = 3 mm,  $\epsilon_{r1} = 3$ , dielectric 2 thickness = 2 mm,  $\epsilon_{r2} = 2$ , if the potential of 100 V is applied across plate. Find the energy stored in each dielectric & potential gradient in each dielectric.
- 3. Attempt any two of the following: (5×2=10)
  - (a) Derive Maxwell's equation from Faraday's law and Ampere circuital law.
  - (b) A current element  $I_1\Delta L_1=10^{-5}a_z$  AM is located at  $P_1(1,0,0)$  while a second element  $I_2\Delta L_2=10^{-5}(0.6a_x-2a_y+3a_z)$  AM is located at  $P_2(-1,0,0)$  both in free space. Find the vector force on element 2 by element 1.
  - (c) Derive an expression of magnetic field intensity due to infinite long straight conductor using Ampere's circuital law.

- Attempt any two of the following: (5×2=10)
  - (a) Derive the condition for polarization of uniform plane wave.
    Write a short note on linear polarization of uniform plane wave.
  - (b) Derive an expression of uniform plane wave in free space and good conductor.
  - (c) A medium is characterized by  $\epsilon_r$ = 2.5,  $\mu_r$ = 4,  $\sigma$  = 10<sup>-3</sup>S/m at frequency of 10 MHz.

## Find:

EEC508/VEQ-15330

- (i) Attenuation constant
- (ii) Phase constant
- (iii) Propagation constant
- (iv) Velocity of propagation
- (v) Intrinsic impedance.

